Заземление - Мастера-Столицы

Поиск
Перейти к контенту

Главное меню:

Заземление

Заземляющее устройство - совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть - это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро  и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки. Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

Сопротивление заземления - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Сопротивление заземления - основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом. Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).
Заземляющий электрод (электрод заземлителя) - проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро  и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Контур заземления - “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.
Удельное электрическое сопротивление грунта - параметр, определяющий собой уровень "электропроводности" грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода. Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли - на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).
Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).
Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний. Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования. Подробнее защитное назначение заземления можно рассмотреть на двух примерах:
• в составе внешней молниезащитной системы в виде заземленного молниеприёмника
• в составе системы защиты от импульсного перенапряжения
• в составе электросети объекта

Б2.1. Заземление в составе молниезащиты
Молния - это разряд или другими словами "пробой", возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.
Воздух - это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы - таким образом представляя опасность для человека и оборудования, находящихся в этом здании.
Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).
Для того, чтобы сделать молниезащиту "привлекательной" для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.


Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.
Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают "размера" накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставится УЗИП.
Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный "порог" заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой - подключается к одному из проводов линии/ кабеля.
При достижении этого порога внутри разрядника возникает разряд :-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).


Как и в молниезащите - заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления - это обеспечение безопасности человека и электрооборудования при поломках/ авариях.
Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов - прежде всего нервной системы и сердца.
Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации. 
Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.


В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании "вредных" токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
• площадь ( S ) электрического контакта заземлителя с грунтом
• электрическое сопротивление ( R ) самого грунта, в котором находятся электроды



В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.
Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая - как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.
Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока - морская вода. Примером “плохого” для заземления грунта является сухой песок.
Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.
Для ориентирования приведу следующие значения:
• для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
• при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
• для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
• у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
• у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
• для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
◦ при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
◦ при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)

В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.
Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.
Выбор формул расчёта зависит от выбранной конфигурации заземлителя. Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:


Точность расчёта обычно невысока и зависит опять же от грунта - на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади - образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.
В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже - значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.
Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов - у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

"Заземление в частном доме" своими руками

Основной элемент любого заземляющего устройства – заземлитель, представляет собой металлическую конструкцию, смонтированную в грунт.
Заземлитель , получаемый из комплекта "Заземление в частном доме" -
это одиночный сборный глубинный заземляющий электрод, состоящий из четырёх
1,5-метровых стальных штырей, покрытых слоем электротехнической меди.

Преимущества такой конструкции и используемых материалов:

Срок службы до 100 лет

Простой монтаж силами одного человека без специнструмента.
Для строительства заземлителя необходимой длины 1,5-метровые штыри заглубляются в землю друг за другом с помощью ударного ручного инструмента (кувалды). Для подключения проводника до электрощита используется болтовой зажим.

Минимальная площадь, занимаемая заземлителем позволяет монтировать его в подвалах домов, либо в близости от стен в виде всего одной точки. Компактность сводит к минимуму необходимые земляные работы.

Не требуется сварка *

Качество заземления не зависит от погоды и времени года

Комплект упакован в коробку из крепкого картона с пластиковой ручкой для переноски. Внутри коробки находятся детали комплекта заземления, а также руководство по монтажу и пара фирменных наклеек для размещения на дверце электрощита или на другой плоской поверхности по усмотрению покупателя

В наличии
5.100,00 руб Добавить

Головка направляющая

Предназначена для упрощения процесса заглубления штырей заземления, а также для повышения безопасности работы как человека, так и инструмента.

При монтаже головка крепится к штырю заземления через соединительную муфту. Размеры головки подобраны таким образом, чтобы движущая сила не повредила муфту, т.е. ударный импульс передается непосредственно штырю, минуя ее.

В наличии
210,00 руб Добавить

Готовый комплект 15м

Универсальный комплект модульного заземления предназначен для организации одноточечного или трехточечного заземляющего устройства для жилых объектов (домах, дачах), для телекоммуникационных и энергетических объектов операторов мобильной и стационарной связи, ведомственных сетей, промышленных предприятий.

Этот готовый комплект содержит все, необходимые для монтажа заземлителя, компоненты, легко сопрягаемые друг с другом.

Штырь заземления омедненный резьбовой (D14; 1,5 м)
В комплекте 10 штырей
Муфта соединительная резьбовая
В комплекте 10 муфт
Наконечник стартовый
В комплекте 3 наконечника
Головка направляющая для насадки на отбойный молоток
В комплекте 2 головки
Зажим для подключения проводника
В комплекте 3 зажима
Смазка токопроводящая
В комплекте 1 смазка
Лента гидроизоляционная
В комплекте 1 лента
Насадка на отбойный молоток (SDS-max)
В комплекте 1 насадка

В наличии
11.820,00 руб Добавить

Зажим для подключения проводника

Профилированный зажим из нержавеющей стали с болтами М10. Позволяет соединять омеднённый штырь заземления с заземляющим проводником - круглым проводом либо полосой (шириной до 40 мм). Также позволяет соединять проводники из различных металлов: например, из меди и из "чёрной" стали.

Возможно безопасное использование стального и оцинкованного проводника - для этого внутри зажима находится прокладка, препятствующая образованию электрохимической связи между сталью/цинком и медью штыря заземления.

Для предотвращения самоотвинчивания резьбовых соединений "болт-гайка" используются пружинные шайбы (шайбы Гровера / гровер-шайбы), установленные между поверхностью зажима и гайкой.

В наличии
380,00 руб Добавить

Лента гидроизоляционная

Лента используется для защиты соединения штыря заземления с заземляющим проводником от почвенной и электрохимической коррозии путем полного вытеснения воды (влаги) из места соединения, без которой процесс коррозии невозможен. При этом лента не теряет своих физических и механических свойств в течении многих лет.

Изготовлена из нетканого синтетического волокнистого материала, пропитанного и покрытого нейтральным составом на основе насыщенного нефтяного углеводорода (петролатум) и инертного кремнийсодержащего наполнителя. Остается пластичной под воздействием широкого спектра температур. Не затвердевает и не растрескивается. Высокостойкая к неорганическим кислотам, щелочам, солям и микроорганизмам, высокогерметичная в отношении воды, водяного пара и газа.

В наличии
560,00 руб Добавить

Муфта соединительная резьбовая

Латунная муфта предназначена для соединения штырей заземления друг с другом. Она изготовлена таким образом, чтобы штыри соприкасались друг с другом в самом центре муфты и движущая энергия, необходимая заглублению штырей в почву, муфте не передавалась. Таким образом не происходит "рассеивания" ударного импульса и снимает с муфты механическую нагрузку.

В наличии
250,00 руб Добавить

Наконечник стартовый

Остроконечный стальной наконечник упрощает заглубление штырей заземления в твердый грунт.

В наличии
180,00 руб Добавить

Насадка на отбойный молоток

Стальная насадка с подкаленным бойком передает усилие отбойного молотка на направляющую головку (на монтируемые штыри заземления). Адаптирована для работы с отбойными молотками с посадочным местом SDS-Max.

В наличии
1.250,00 руб Добавить

Проводник заземляющий (ПВ-1 25 мм²)

Медный цельнотянутый (одножильный) проводник сечением 25 мм² в ПВХ изоляции жёлто-зелёного цвета используется для соединения заземлителя с объектом (ГЗШ в щите).

Выбор такого сечения обусловлен требованием к минимальной площади поперечного сечения заземляющего проводника из меди, проложенного в земле, ГОСТ Р 50571.5.54-2011
Проводник заземляющий поставляется в бухтах по 1/3/5/10 метров
, опрессованных с одного конца медным луженым наконечником с отверстием под болт D8 для присоединения к ГЗШ. Поставка проводника метражом осуществляется без установленного наконечника. Соединение со штырем заземления производится зажимом.

В наличии
170,00 руб Добавить

Проволока омеднённая (D8 и D10 мм)

Омеднённая проволока изготовляется из катанной стали с электролитически нанесенным медным покрытием чистотой 99.9% и толщиной не менее 0.070 мм, составляющим молекулярное и неразрывное соединение со сталью.
Проволока диаметром 8 мм (площадью поперечного сечения 50 мм²) применяется в качестве токоотводов или сетчатых молниеприёмников.

Проволока диаметром 10 мм (площадью поперечного сечения 80 мм²) применяется в качестве заземляющего проводника.

В наличии
175,00 руб Добавить

Смазка / паста токопроводящая

Смазка / паста применяется для уменьшения электрического сопротивления между штырями заземления и соединительной муфтой (в среднем на 10%), а также дополнительной защиты торцов штырей от коррозии. Смазка также используется для направляющей головки, облегчая ее снятие после заглубления очередного штыря.

Во время монтажа паста наносится на резьбу деталей (обладает хорошей адгезией).


Технические данные:
- температура каплепадания: не ниже 90 С°
- содержание воды: не более 2%
- пенетрация при 25 С°, мм/10 в пределах: 200-300

В наличии
360,00 руб Добавить

Штырь заземления

Это стальной тянутый стержень диаметром 14 мм и длиной 1,5 метра, покрытый методом электролитического осаждения (электролиза) медью чистотой 99.9%, образующей покрытие с молекулярной и неразрывной связью со сталью.

По краям методом накатки нанесена резьба для их взаимного соединения с помощью соединительной муфты.

Высококачественная сталь в таком заземлителе выполняет кроме электропроводящей еще и необходимую для зарывания электрода в почву - механическую роль. Штыри обладают высоким пределом прочности на разрыв (600 Н/мм²) и могут быть погружены в грунт при помощи отбойного молотка на большую глубину - до 40 метров.

Толщина медного покрытия составляет не менее 0.25 мм по всей длине стержня (включая резьбу). Это гарантирует его (покрытия) устойчивость к изгибу, отслоению, сцарапыванию при монтаже. Особенно это важно на резьбе, где более тонкий слой меди будет полностью разрушен от нагрузок и трения с муфтой во время заглубления (монтажа) *.

Эти особенности гарантирует высокую коррозийную устойчивость штыря заземления и обеспечивают столь долгий срок службы (до 100 лет).

* Особенности создания резьбы
"Правильная" резьба наносится ПОСЛЕ омеднения - накаткой, т.к. только такой способ позволяет добиться высокого общего качества штыря.

Альтернативная "технология" омеднения штырей: с уже сформированной резьбой (до нанесения покрытия) более дешевая, НО показывает худший (и опасный при эксплуатации) результат.
Это связано с особенностью электролиза: утолщением покрытия в углублениях / впадинах, из-за чего основной материал (сталь) на резьбе можно покрыть только тонким (0.03 - 0.05 мм) слоем меди.
Такое тонкое покрытие легко повреждается при монтаже ударами и трением в муфте. В дальнейшем при эксплуатации заземляющего электрода с такими нарушениями возникают очаги электрохимической коррозии ("медь-железо"), приводя к его полному разрушению в течении 2-3 лет.

В наличии
565,00 руб Добавить
 
Рейтинг@Mail.ru Бесплатное продвижение сайта
Назад к содержимому | Назад к главному меню